Microvascular network optimization of self-healing materials using non-dominated sorting genetic algorithm II and experimental validation
نویسندگان
چکیده
منابع مشابه
Optimal Distribution System Reconfiguration Using Non-dominated Sorting Genetic Algorithm (NSGA-II)
In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...
متن کاملNon-dominated Sorting Genetic Algorithm-ii Based Route Optimization
NSGA methodology discussed in Section 3.1 suffers from three weaknesses: computational complexity, non-elitist approach and the need to specify a sharing parameter. An improved version of NSGA known as NSGA-II, which resolved the above problems and uses elitism to create a diverse Pareto-optimal front, has been subsequently presented (Deb et al 2002). The main features of NSGA-II are low comput...
متن کاملMulti-objective optimization of discrete time–cost tradeoff problem in project networks using non-dominated sorting genetic algorithm
The time–cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate e...
متن کاملoptimal distribution system reconfiguration using non-dominated sorting genetic algorithm (nsga-ii)
in this paper, a non-dominated sorting genetic algorithm-ii (nsga-ii) based approach is presented for distribution system reconfiguration. in contrast to the conventional ga based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. in order to illustrate the performance of the proposed method,...
متن کاملMulti-objective Traffic Signal Timing Optimization Using Non-dominated Sorting Genetic Algorithm II
This paper presents the application of Nondominated Sorting Genetic Algorithm II (NSGA II) in solving multiple-objective signal timing optimization problem (MOSTOP). Some recent researches on intersection signal timing design optimization and multi-objective evolutionary algorithms are summarized. NSGA II, which can find more of the Pareto Frontiers and maintain the diversity of the population,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Progress
سال: 2019
ISSN: 0036-8504,2047-7163
DOI: 10.1177/0036850419883541